Finite Difference Schemes on Hexagonal Grids for Thin Linear Plates with Finite Volume Boundaries

نویسندگان

  • Brian Hamilton
  • Alberto Torin
چکیده

The thin plate is a key structure in various musical instruments, including many percussion instruments and the soundboard of the piano, and also is the mechanism underlying electromechanical plate reverberation. As such, it is a suitable candidate for physical modelling approaches to audio effects and sound synthesis, such as finite difference methods—though great attention must be paid to the problem of numerical dispersion, in the interest of reducing perceptual artefacts. In this paper, we present two finite difference schemes on hexagonal grids for such a thin plate system. Numerical dispersion and computational costs are analysed and compared to the standard 13-point Cartesian scheme. An equivalent finite volume scheme can be related to the 13-point Cartesian scheme and a 19-point hexagonal scheme, allowing for fitted boundary conditions of the clamped type. Theoretical modes for a clamped circular plate are compared to simulations. It is shown that better agreement is obtained for the hexagonal scheme than the Cartesian scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units

In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Adaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation

An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...

متن کامل

Hexagonal vs. Rectilinear Grids for Explicit Finite Difference Schemes for the Two-dimensional Wave Equation

Finite difference schemes for the 2-D wave equation operating on hexagonal grids and the accompanying numerical dispersion properties have received little attention in comparison to schemes operating on rectilinear grids. This paper considers the hexagonal tiling of the wavenumber plane in order to show that the hexagonal grid is a more natural choice to emulate the isotropy of the Laplacian op...

متن کامل

Water hammer simulation by explicit central finite difference methods in staggered grids

Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014